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Abstract

The present paper proposes an adaptive biasing potential technique for the compu-

tation of free energy landscapes. It is motivated by statistical learning arguments

and unifies the tasks of biasing the molecular dynamics to escape free energy wells

and estimating the free energy function, under the same objective of minimizing

the Kullback-Leibler divergence between appropriately selected densities. It offers

rigorous convergence diagnostics even though history dependent, non-Markovian

dynamics are employed. It makes use of a greedy optimization scheme in order to

obtain sparse representations of the free energy function which can be particularly

useful in multidimensional cases. It employs embarrassingly parallelizable sampling

schemes that are based on adaptive Sequential Monte Carlo and can be readily

coupled with legacy molecular dynamics simulators. The sequential nature of the
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learning and sampling scheme enables the efficient calculation of free energy func-

tions parametrized by the temperature. The characteristics and capabilities of the

proposed method are demonstrated in three numerical examples.

Key words: free energy computations, adaptive biasing potential, Sequential

Monte Carlo, atomistic simulations, statistical learning

PACS:

1 Introduction

Free energy is a central concept in thermodynamics and in the study of several

systems in biology, chemistry and physics [11]. It represents a rigorous way to

coarse-grain systems consisting of very large numbers of atomistic degrees of

freedom, to probe states not accessible experimentally, to characterize global

changes as well as investigate relative stabilities. In most applications, a brute-

force computation based on sampling the atomistic positions is impractical or

infeasible as the free energy barriers to overcome are so large that the system

remains trapped in metastable free energy sets [56,61,11,77].

Equilibrium techniques for computing free energy surfaces such as Thermo-

dynamic Integration [35], Weighted Histogram Analysis Method (WHAM,

[39,67]), Adaptive Integration [71,26], Multistate Bennett Acceptance Ratio

(MBAR, [66]) require the simulation of very long atomistic trajectories in or-

der to achieve equilibrium. Furthermore, sampling along these paths correctly
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might necessitate advanced and quite involved techniques [13]. Techniques

based on non-equilibrium path sampling [31,32,28,30] lack adaptivity and re-

quire the user to specify a particular path on the reaction coordinate space

connecting two energetically important free energy regions, which can be non-

trivial a task. More recently proposed adaptive biasing potential [3,76,41,2,24]

and adaptive biasing force [17,16,29] techniques are capable of dynamically

utilizing information obtained from the atomistic trajectories to bias the cur-

rent dynamics in order to facilitate the escape from metastable sets [43]. They

are able to automatically discover important regions of the reaction coordi-

nate space. Since they rely on history-dependent, non-Markovian dynamics, it

is not a priori clear, and in which sense, the system reaches a stationary state.

Some work along these lines has been done in the context of the adaptive

biasing force method in [44], for Langevin-type systems in [6] and in [53,43].

We propose an adaptive biasing potential technique where the two tasks of

biasing the dynamics and estimating the free energy landscape are unified

under the same objective of minimizing the Kullback-Leibler divergence be-

tween appropriately selected distributions on the extended space that includes

atomic coordinates and the collective variables [51,52]. This framework pro-

vides a natural way for selecting the basis functions used in the approximation

of the free energy and obtaining sparse representations which is critical when

multi-dimensional collective variables are used. It allows the analyst to utilize

and correct any prior information on the free energy landscape and provides

an efficient manner of obtaining good estimates at various temperatures. The

scheme proposed is embarrassingly parallelizable and relies on adaptive Se-

quential Monte Carlo procedures which enable efficient sampling from the

high-dimensional and potentially multi-modal distributions of interest.
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The structure of the rest of the paper is as follows. In the beginning of Section

2 we motivate our method for the alchemical case arriving at the identification

of three (interconnected) problems: the selection of a parametrization of the

free energy function, the choice of a distance metric in the space of probabil-

ity densities and an optimization scheme to minimize this distance between

two appropriately selected densities. Section 2.1 discusses the suitability and

advantages of the Kullback-Leibler divergence. Section 2.2 deals with the opti-

mization strategy employed and the use of a stochastic approximation scheme

that guarantees convergence under weak conditions. Section 2.3 discusses a

suboptimal strategy for the successive resolution of the free energy landscape

by progressive addition of basis functions. Section 2.4 is concerned with an

adaptive Sequential Monte Carlo scheme for the estimation of the expectations

involved. Section 3 demonstrates the advantages of the proposed method for

two important extensions: the reaction coordinate case, and the calculation

of the free energy function as a function of temperature. Finally Section 4

contains results that illustrate the capabilities of the method with numerical

results from three test cases.

2 Methodology - A statistical learning approach for adaptively cal-

culating free energies

For clarity of the presentation, we will first introduce our method for the

so-called alchemical case and generalize it later for the reaction coordinate

case. Consider a molecular system with (generalized) coordinates q ∈ M ⊂

R
n following a Boltzmann-like distribution which in turn depends on some
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parameters z ∈ D ⊂ R
d (in general d << n):

p(q|z) ∝ exp (−βV (q; z)) , (1)

where V (q; z) is the potential energy of the system and β plays the role of in-

verse temperature. The free energy A(z) is defined, up to an additive constant,

as:

A(z) = −β−1 log
∫

M
exp (−βV (q; z)) dq. (2)

In general, the paperameters z provide a coarse-grained description of the

molecular system and A(z) concisely summarizes the system’s behavior with

respect to those variables. Our goal is to compute the free energy function

A(z) over the whole domain D.

Let Â(z;θ) be an estimate of A(z) parametrized by θ ∈ Θ ⊂ R
k. This

parametrization will be made precise in the sequel. We define a joint prob-

ability distribution on the (generalized) coordinates q and the parameters z

as:

p(q, z | θ) = 1

Z(θ)
1D(z)e

−β(V (q,z)−Â(z;θ)), (3)

where 1D(z) is the indicator function on D and Z(θ) is the normalization

constant, i.e.:

Z(θ) =
∫

D×M
e−β(V (q,z)−Â(z;θ))dqdz. (4)

It is easy to verify that the marginal density of the parameters z ∈ D is given

by:

p(z | θ) = ∫

M p(q, z | θ) dq

= 1
Z(θ)

1D(z)e
−β(A(z)−Â(z;θ)).

(5)

The key property of p(z | θ) is that it reduces to the uniform distribution on

D if and only if the free energy estimate is exact (up to an additive constant),
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i.e. Â(z;θ) = A(z), z ∈ D. As a result a natural strategy to estimate A(z) is

by minimizing a distance metric between p(z | θ) and the uniform distribution

over D.

To make things mathematically precise, let P denote the the set of all proba-

bility densities on D with respect to z, and:

π(z) = 1D(z)
1

| D | (6)

the uniform density on D ( whose volume is denoted by | D |). Our approach

to the free energy estimation problem consists of three key ingredients:

(1) the selection of a parameterization for Â(z; θ),

(2) the choice of a distance metric d : P × P → R

(3) a procedure for the solution of the minimization problem

θ∗ = argmin
θ∈Θ

d (π(z), p(z|θ)) .

With regards to the first ingredient, we adopt representations inspired by

kernel regression expansions. Kernel regression models have been proven suc-

cessful for functional approximations in high-dimensional cases where d is in

the order of 10 or 100 [72,73]. The unknown function is selected from a Repro-

ducing Kernel Hilbert Space (RKHS) HK induced by a positive, semi-definite

kernel K(·, ·). In particular, the approximate free energy function Â(z;θ) is

expressed as:

Â(z;θ) =
k∑

j=1

θjK(z, zj; τj) =:
k∑

j=1

θjKj(z), z ∈ D (7)

where zj are points in D and τj kernel parameters whose role is described in

the sequel. In order to fix the additive constant, we select a point z0 ∈ D such

6



that Â(z0;θ) = 0 1 . In relevant literature different types of kernel functions

have been used such as thin plate splines, multiquadrics or Gaussians. While

all these functions can be employed in the framework presented, we focus our

presentation on Gaussian kernels which also have an intuitive parametrization

with regards to the scale of variability of Â as quantified by the bandwidth

parameters τj = {τj,l}dl=1 in each dimension:

Kj(z) = K(z, zj ; τj) = exp{−
d∑

l=1

τj,l(zl − zj,l)
2}. (8)

Gaussian kernels in the context of free energy approximations have also been

used in [41,51,24]. In Section 2.3, we discuss a way of adaptively determining

the cardinality of the expansion k, as well as the precise form of Kj (i.e.. zj

and τj).

With regards to second ingredient, we employ the Kullback-Leibler divergence

as a measure of distance between probability distributions. As discussed in

Section 2.1, this choice possesses computational and theoretical advantages

and leads to a convex optimization problem. Finally with regards to the third

ingredient, we propose a stochastic gradient descent scheme as discussed in

detail in Section 2.2. The latter involves a stochastic approximation scheme

and a sampler for the estimation of expectations involved which is discussed

in Section 2.4. The algorithmic steps are summarized in Algorithm 2.

1 This is always possible by changing the kernels in Equation (7) to K ′
j(z, zj) =

Kj(z)−Kj(z0, zj).
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2.1 Choice of the metric

We propose employing the Kullback-Leibler (KL) divergence KL(π(z) ‖ p(z |

θ)) [14]:

KL(π ‖ p) =
∫

D
π(z) log

π(z)

p(z | θ) dz. (9)

It is always non-negative and becomes zero if and only if π(z) ≡ p(z | θ) or

equivalently Â(z;θ) = A(z), z ∈ D 2 . Despite the fact that it is not a metric

in the mathematical sense, it is frequently used as a measure of the distance

between two probability distributions. Furthermore the KL-divergence pro-

vides upper bounds to other commonly used metrics such as the Hellinger

distance defined by:

H(π ‖ p) =
(
∫

D

(√

p(z|θ)−
√

π(z)
)2

dz

)1/2

,

as well as the total variation distance: 3

V(π ‖ p) = sup
B∈B(D)

∣
∣
∣
∣

∫

B
(p(z|θ)− π(z)) dz

∣
∣
∣
∣ .

Le Cam’s inequalities as well as Lemma 2.4 of [74] imply that:

V2(π ‖ p) ≤ H2(π ‖ p) ≤ KL(π ‖ p). (10)

Hence an minimization of the KL-divergence provides good approximations of

the free energy surface with respect to these two genuine distances as well.

Since:

KL(π ‖ p) = − log | D | −
∫

π(z) log p(z | θ)dz,

2 As already mentioned, of interest are free-energy differences and therefore per-

turbations of A(z) or Â(z;θ) by a constant are ignored.
3 We denote here with B(D) the set of the Borel sets of Rd that are subsets of D,

i.e. the set of all Lebesgue measurable subsets of D.
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the aforementioned formulation offers a clear strategy for estimating the free

energy by minimizing the following form with respect to θ:

I(θ) = −
∫

π(z) log p(z | θ)dz. (11)

The KL-divergence is always non-negative, so the objective function I(θ) has

a lower bound:

I(θ) ≥ log | D | . (12)

This lower bound can be readily calculated and used to monitor convergence

as well as the quality of the approximation obtained.

Notice that I(θ) depends on the unknown free energy A(z) explicitly (from

Equation (5)):

I(θ) = − ∫ π(z) log p(z | θ)dz

= β
∫

π(z)
(

A(z)− Â(z;θ)
)

dz+ logZ(θ).

(13)

However, its gradient J(θ) = ∂I(θ)
∂θ

depends on A(z) only through an expec-

tation over p(z|θ). In particular, by differentiating Equation (4) we obtain:

∂ logZ(θ)

∂θj
=

1

Z(θ)

∂Z(θ)

∂θj
= βEp(z|θ)[Kj(z)] (14)

and thus:

Jj(θ) =
∂I(θ)
∂θj

= −βEπ(z)

[
∂Â
∂θj

]

+ ∂ logZ
∂θj

= β
(

Ep(z|θ) [Kj(z)]− Eπ(z) [Kj(z)]
)

,

(15)

where Ep(z|θ)[·] and Eπ(z)[·] imply an expectation with regards to p(z|θ) and

π(z) respectively. Given the unavailability of p(z | θ) (since it depends on the

unknown free energy A(z)), the expectations above can only be computed by
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Monte Carlo sampling in the joint spaceM×D with respect to the joint den-

sity p(q, z | θ) (Equation (3)) that is known up to the normalization constant.

The algorithmic scheme employed for the computation of these expectations

is discussed in detail in Sections 2.2 and 2.4.

Finally, it is important to note that the Hessian of the objective function ∂2I(θ)
∂θ∂θT

is proportional to the covariance between the kernels i.e.:

∂2I
∂θj∂θl

= ∂ logZ(θ)
∂θj∂θl

= − 1
Z2(θ)

∂Z
∂θj

∂Z
∂θl

+ 1
Z(θ)

∂2Z
∂θj∂θl

= β2Ep(z|θ)

[

(Kj(z)− Ep(z|θ)[Kj(z)])(Kl(z)− Ep(z|θ)[Kl(z)])
]

= β2 Covp(z|θ)[Kj, Kl].

(16)

As long as the covariance matrix is positive definite, the objective function is

convex with respect to θ and there is a unique minimum. For the Gaussian

kernels employed (Equation (8)) which have infinite support, this condition is

satisfied except for degenerate cases of p(z | θ). The formulation presented can

also be interpreted by using arguments based on the well-known Expectation-

Maximization algorithm (EM, [23]) as discussed in appendix B where potential

Bayesian extensions are also presented.

2.2 Optimization with noisy gradients

We propose employing a gradient descent scheme in order to determine θ. It is

noted that for similar computational problems as they appear for example in

the context of maximum entropy estimation, more involved procedures such

as Improved Iterative Scaling [4,22] and noisy conjugate gradients [65] have
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been be employed. Second-order (quasi-)Newton-Raphson techniques are also

possible although the unavoidable Monte Carlo noise in the computation of

the Hessian (i.e. the covariance in Equation (16)) can destroy its positive

definiteness.

Let θk denote the vector of kernel amplitudes (Equation (7)) when k such

kernels are used. Let also θk
m denote the estimate of θk after m iterations of

the gradient descent algorithm. Then at the (m+ 1)−iteration, the following

update equation could be used:

θk
m+1 = θk

m − λJ(θk
m) (17)

where λ > 0 is the learning rate.

In general exact calculation of the gradient J(θ) (Equation (15)) is impossible

and one must resort to noisy, Monte Carlo estimates. The noise can impede

convergence or even lead to a divergent scheme. For that purpose we propose

employing a stochastic approximation variant of the Robbins & Monro scheme

[62,9] in combination with an adaptive Sequential Monte Carlo sampler. The

former ensures convergence with finite sample size and does not necessitate

equilibrium samples from p(z | θ). The latter produces estimators with lower

variance as compared to standard Markov Chain Monte Carlo schemes and

leads to accelerated convergence. It is noted that stochastic approximation

schemes in the context of free energy estimation have previously been used in

[46,47].

If Ĵ(θk
m) denotes the Monte Carlo estimate of the gradient obtained with a

finite sample size (the details of this estimator are discussed in section 2.4),
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then at the mth iteration we update θk as follows:

θk
m+1 = θk

m − ηmĴ(θ
k
m), (18)

where {ηm} is an appropriately chosen sequence of learning rates. According

to [68] (page 106), the aforementioned scheme converges almost surely to the

root θ̃k of J(θ):

J(θ̃k) = 0,

if the following four conditions are satisfied:

C1) (Learning Rates): ηm > 0, ηm → 0,
∑∞

m=0 ηm =∞ and
∑∞

m=0 η
2
m <∞.

C2) (Search Direction): For some symmetric, positive definite matrix B and

every 0 < ǫ < 1,

inf
ǫ<‖θk−θ̃k‖<1/ǫ

(

θk − θ̃k
)T

BJ(θk) > 0.

C3) (Mean-zero noise): The estimator Ĵ(θk) of J(θk) is unbiased i.e.:

E
[

Ĵ(θk)
]

= J(θk), (19)

C4) (Growth and variance bounds):

E
[

‖ Ĵ(θ) ‖2
]

≤ c
(

1+ ‖ θ ‖2
)

. (20)

In this work we use sequences of the form:

ηm =
η

(m+m0)−α
,

with 1/2 < α ≤ 1, η > 0 and m0 ≥ 0, which ensures that condition (1) is

satisfied. In all numerical examples of Section 4 we used m0 = 0. In Appendix

A, we prove that condition C2 holds in our case for B = I i.e. the identity ma-

trix. Condition C3 is a trivial property of the Sequential Monte Carlo sampler
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as discussed in Section 2.4 [19]. Finally, the fourth condition C4 (for bounded

kernel functions Kj (Equation (15))) is satisfied for Sequential Monte Carlo

estimators under mild condition as it has been shown in [15] (Theorem 1) and

[40] (Theorem 4). More recent works have increased the generality of these re-

sults [12,21] and provided asymptotic rates for the variance of the estimators

as well.

In practical terms, Equation (18) implies computing a weighted average of

the gradient’s estimates at the current and previous iterations. By employing

a decreasing sequence of weights, information from the earlier iterations gets

discarded gradually and more emphasis is placed on the recent iterations. In

practice the gradient descent was terminated when the following two condi-

tions were met. Firstly, when all all the components of the gradient Ĵ(θ) had

crossed zero at least once. Given the problem convexity, this indicated that

further flucluations were the result of noise in the Monte Carlo estimators. Sec-

ondly, when the relative change in θ was smaller than a prescribed tolerance

i.e.
‖θk

m+1−θk
m‖

‖θk
m‖

< 10−3.

The final number of iterations depends also on the number of kernels present

in the approximation.

2.3 Kernel Selection

A critical objective in the proposed framework relates to the sparseness of the

free energy approximation i.e. the cardinality k of the expansion in Equation

(7). This is important in at least two ways. Firstly, because sparser representa-

tions can more clearly expose salient features of the free energy landscape, and
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as a consequence, of the atomistic ensemble considered. Secondly, because they

reduce the number of parameters θ with respect to which the optimization

problem needs to be solved (section 2.2). Given a vocabulary of potentially

overcomplete basis functions and a prescribed k, the problem amounts to iden-

tifying those kernels (Equation (7)) that best approximate the true free energy

surface i.e. minimize the KL divergence for z ∈ D (Equation (9)). Given that

the objective function I(θ) implicitly depends on the kernels selected, the

aforementioned problem is equivalent to finding, amongst all k-sized combi-

nations of kernels, the one that gives rise to the smallest I(θ). This obviously

implies an excessive computational effort since the cumbersome optimization

problem with respect to θ would have to be solved for all possible k−sized

combinations of basis functions.

For that purpose, we propose a suboptimal scheme that proceeds by adding

a single kernel at the end of each optimization cycle with respect to θ i.e.

the cardinality k of the expansion (Equation (7)) increases by one. Simi-

lar greedy procedures have been successfully applied in maximum entropy

problems [79,22,80]. Without loss of generality, one can consider a vocab-

ulary of functions that consists of the Gaussian kernels discussed in Equa-

tion (8) which are parametrized by their locations zj ∈ D and bandwidths

τj = {τj,l ∈ R
+}dl=1. Given k such kernels, let θk = {θkj }kj=1 (Equation (7))

denote the corresponding parameters that minimize I(θ) in Equation (11).

The goal of the ensuing scheme is to select zk+1 ∈ D, τk+1 = {τk+1,l ∈ R
+}dl=1

of the next k + 1 kernel. Once this have been achieved, the corresponding

θk = {θk+1
j }k+1

j=1 values are obtained by carrying out the optimization process

14



discussed in the previous section for the given set of k + 1 kernels. Let also:

Âk(z;θ
k) =

∑K
j=1 θ

k
jKj(z) and Âk+1(z;θ

k+1) =
∑k

j=1 θ
k+1
j Kj(z)

(21)

denote the associated free-energy approximations obtained using k and k + 1

kernels respectively, and pk(q, z | θk) and pk+1(q, z | θk+1) the corresponding

densities in Equation (3). Note that in general θkj 6= θk+1
j , j = 1, . . . , k even

though the first k kernels in the aforementioned expansions (Equation (21))

are identical. Since θk minimize I(θ), the gradient of I(θ) must be zero at θk,

i.e.:

∂I(θ)

∂θ
|θk= 0→ Eπ [Kj(z)] = Epk [Kj(z)] . (22)

Given that Âk+1(z;θ
k+1) provides a better approximation to the true free

energy (or at least just as good as Âk(z;θ
k)), the improvement in terms of

Kullback-Leibler divergence (Equation (9)), denoted by ∆k+1 can be assessed

with:

∆k+1 = KL(π ‖ pk)−KL(π ‖ pk+1)

= βEπ

[

Âk+1(z;θ
k+1)− Âk(z;θ

k)
]

− log Z(θk+1)
Z(θk)

.

(23)

By employing Equations (21) and (22), it can be shown that [79]

∆k+1 = βEπ

[

Âk+1(z;θ
k+1)− Âk(z;θ

k)
]

− log Z(θk+1)
Z(θk)

= βEpk+1

[

Âk+1(z;θ
k+1)

]

− βEpk

[

Âk(z;θ
k)
]

− log Z(θk+1)
Z(θk)

= KL(pk+1 ‖ pk) ≥ 0.

(24)

Formally one would need to solve an optimization problem with respect to

θk+1 for all possible Kk+1(z) in order to find the one that maximizes ∆k+1 or

equivalently the gain in terms of the KL-divergence. In order to circumvent
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this difficulty, we employ a second-order Taylor expansion of ∆k+1 detailed in

[79]:

∆k+1 ≈
1

2Vark,k+1

(Eπ [Kk+1(z)]− Epk [Kk+1(z)])
2 , (25)

where Vark,k+1 is the conditional variance of Kk+1(z) given Kj(z) j = 1, . . . , k

with respect to a distribution that lies between pk and pk+1 in the sense of Kull-

back (page 48, [38]). We propose therefore measuring this KL-gain using the

difference between the expected values of Kk+1(z) in terms of the (target) uni-

form distribution π and the current approximation pk. This effectively suggests

augmenting our expansion with the kernel that locally maximizes the gradient

of I(θ). Intuitively it implies incorporating the kernel function whose expected

value with respect to the target, uniform distribution is worst approximated

by the current density pk. In practical terms, and given the parametrization

of the Gaussian kernels employed, this amounts to finding the location and

bandwidth parameters
(

z∗k+1, τ
∗
k+1 = {τ ∗k+1}dl=1

)

(over the range of allowable

values) so that:

(z∗k+1, τ
∗
k+1) = arg max

(zk+1,τk+1)
(Epk [K(z; zk+1, τk+1)]− Eπ [K(z; zk+1, τk+1)])

2 .

(26)

The solution of this simple, low-dimensional optimization problem can be

carried out using any standard global/local technique. More details on the

methodology adopted in the examples examined are contained in section 4. It

is noted that the expectation with respect to pk in Equation (26) is approx-

imated using the Sequential Monte Carlo samplers discussed in section 2.4.

Furthermore regularization terms can be added to the objective function of

Equation (26) in order to promote lower or larger bandwidth kernels (see also

appendix B). Naturally, the same formulation can be applied with any type of

kernel or overcomplete basis employed (e.g. wavelets). The proposed strategy
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promotes sparseness and computational efficiency while offering a progressive

resolution of the free energy landscape that naturally involves kernels that

carry most of the information in the first steps and successive unveiling of

finer details (see the first example of section 4).

It is finally noted that once the next kernel has been selected and the optimiza-

tion has been carried out, the KL-gain ∆k+1 (Equation (23)), offers a natural

metric for monitoring convergence. The expectation with respect to the uni-

form can in general be calculated analytically whereas the ratio of normalizing

constants log Z(θk+1)
Z(θk)

(Equation (3)) is a direct output of the Sequential Monte

Carlo sampling that is used to sample from the augmented densities and is

discussed in the next section.

2.4 Adaptive Sequential Monte Carlo

The learning scheme proposed relies on efficient computations of the gradient

appearing in Equation (15). This depends on expectations with respect to

p(z | θ) (Equation (5)) which are not available analytically since the actual

free energy A(z) is unknown. We resort to a Sequential Monte Carlo (SMC)

scheme that draws samples from the joint density p(q, z | θ) in Equation

(3) which involves the atomic degrees of freedom q. It is noted however that

convergence of the stochatic approximation algorithm discussed previously

is guaranteed even with the most basic MCMC sampler. It is nevertheless

important to have a sampling scheme that mixes well and reduces the bias in

the learning. In addition, the SMC schemes proposed readily enable sampling

from a sequence of distributions that is advantageous in obtaining several

free energy landscapes (i.e. parametrized by the temperature) as illustrated in
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section 3.2.

SMC samplers [20,18] represent a parallelizable strategy that combine the

advantages of MCMC and Importance Sampling, resulting in lower variance

estimators [49,34,33,70]. We propose novel extensions that allow the algorithm

to automatically adapt to the difficulties of the target density, while retaining

the ability to interact seamlessly with legacy, molecular dynamics simulators.

The proposed SMC schemes offer a flexible framework for sampling from a se-

quence of unormalized probability distributions and are therefore highly suited

for the dynamic setting of the problem at hand where the target density

p(q, z | θ) changes with θ. For a given θ, they approximate p(q, z | θ) with

a set of N random samples (or particles/replicas) {q(i), z(i)}Ni=1, which are up-

dated using a combination of importance sampling, resampling and MCMC-

based rejuvenation mechanisms [19]. Each of these particles/replicas is asso-

ciated with an importance weight w(i). The weights are updated sequentially

along with the particle/replica locations in order to provide a particulate ap-

proximation:

p(q, z | θ) ≈
N∑

i=1

W (i) δq(i)(q)δz(i)(z), (27)

where W (i) = w(i)/
∑N

j=1w
(j) are the normalized weights and δz(i)(·) is the

Dirac function centered at z(i). These particles/replicas and weights can be

used to estimate expectations of any p(q, z | θ)-integrable function which

converge almost surely as N →∞ [18,12]. In particular for Equation (15):

N∑

i=1

W (i) Kj(z
(i))→

∫

Kj(z) p(q, z | θ) dqdz = Ep(z|θ) [Kj(z)] . (28)

The proposed SMC algorithms will be used iteratively, after each step of

the gradient descent algorithm. Given two successive estimates θk
m and θk

m+1
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(Equation (18)) and a particulate approximation of p(q, z | θk
m), the goal is

to obtain new samples from p(q, z | θk
m+1) (Algorithm 2) and compute the

new expectations in Equation (15) based on Equation (28). The quality of

the Monte Carlo estimates in Equation (28) depends on the proximity of the

distributions p(q, z | θk
m) and p(q, z | θk

m+1). We propose building a path

of intermediate, unormalized distributions that will bridge this gap based on

Equation (3) 4 :

πγ(q, z) = p(q, z | (1− γ)θk
m + γθk

m+1)

= exp
{

−β
(

V (q, z)− Â(z;θγ)
)}

, γ ∈ [0, 1],

(29)

where

θγ = (1− γ)θk
m + γθk

m+1. (30)

Clearly for γ = 0 one recovers p(q, z | θk
m) and for γ = 1, p(q, z | θk

m+1).

The role of these auxiliary distributions is to provide a smooth transition

path where importance sampling can be efficiently applied. Naturally, the

more intermediate distributions are considered along this path, the higher the

accuracy of the final estimates, but also the higher the computational cost.

On the other hand too few intermediate distributions πγ can adversely affect

the overall accuracy of the approximation.

To that end we propose an adaptive SMC scheme that automatically deter-

mines the number of intermediate distributions needed [19,37]. In this process

we are guided by the Effective Sample Size (ESS, [49]). In particular, let S

be the total number of intermediate distributions (which is unknown a pri-

ori) and γs, s = 1, 2, . . . , S the associated bridging parameters such that

4 subscripts k and m indicating the number of kernels and optimization iterations

respectively have been dropped
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0 = γ1 < γ2 < . . . < γS = 1, which are also unknown a priori. Let also

{(q(i)
s , z(i)

s ), W (i)
s }Ni=1 denote the particulate approximation of πγs defined as in

Equation (29) for γ = γs. The Effective Sample Size of these particles/replicas

is then defined as ESSs = 1/
∑N

i=1(W
(i)
s )2 and provides a measure of the popu-

lation variance. One extreme, i.e. when ESSs = 1, arises when a single replica

has a unit normalized weight whereas the rest have zero weights and as a

result provide no information. The other extreme, i.e. ESSs = N , arises when

all the replicas are equally informative and have equal weights W (i)
s = 1/N .

If the next bridging distribution πγs+1 is very similar to πγs (ie. γs+1 ≈ γs),

then ESSs+1 should not be that much different from ESSs. On the other hand

if that difference is pronounced then ESSs+1 could drop dramatically. Hence

in determining the next auxiliary distribution, we define an acceptable reduc-

tion in the ESS, i.e. ESSs+1 ≥ ζ ESSs (where ζ < 1 5 ) and prescribe γs+1

(Equation (29)) accordingly.

The proposed adaptive SMC algorithm is summarized in Algorithm 1. The re-

sampling component was carried out using a multinomial resampling scheme

(i.e. the new population consisted of replicas drawn from the previous pop-

ulation with probability proportional to their weights) and was triggered for

ESSmin = N/2. It should be noted that unlike MCMC schemes, the parti-

cle/replica perturbations in the Rejuvenation step do not require that the

Ps(., .) is ergodic [20]. It suffices that it is a πγs-invariant kernel, which read-

ily allows adaptively changing its parameters in order to achieve better mix-

ing rates. In the examples presented a component-wise Metropolis-Hastings

scheme ([5]) was used to update q and z separately by employing a Metropolis-

5 The value ζ = 0.95 was used throughout this study.
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Algorithm 1 Adaptive SMC

Require: s = 1 and γ1 = 0 and a population {(q(i)
1 , z

(i)
1 ), w

(i)
1 }Ni=1 which

approximate πγ1 ≡ p(q, z | θk
m) in Equation (29).

Ensure: The population {(θ(i)
s , z(i)

s ), w(i)
s }Ni=1 provides a particulate approxi-

mation of πγs in the sense of Equations (27), (28).

while γs < 1 do

s← s+ 1

{Reweighting-Importance Sampling}

Let

w(i)
s (γs) = w

(i)
s−1

πγs (q
(i)
s−1,z

(i)
s−1)

πγs−1 (q
(i)
s−1,z

(i)
s−1)

= w
(i)
s−1

exp

{

−β(V (q
(i)
s−1,z

(i)
s−1)−Â(z

(i)
s−1;θγs )

}

exp

{

−β(V (q
(i)
s−1,z

(i)
s−1)−Â(z

(i)
s−1;θγs−1 )

}

= w
(i)
s−1 exp

{

−β(Â(z(i)
s−1); (γs − γs−1)(θ

k
m+1 − θk

m)
}

,

(31)

be the updated weights as a function of γs. Determine γs ∈ (γs−1, 1] so

that ESSs = ζ ESSs−1 .

{Resampling}

if ESSs ≤ ESSmin then

Resample

end if

{Rejuvenation}

Use an MCMC kernel Ps

(

(q
(i)
s−1, z

(i)
s−1), (q

(i)
s , z(i)

s )
)

that leaves πγs invariant

to perturb each replica (q
(i)
s−1, z

(i)
s−1)→ (q(i)

s , z(i)
s ).

end while

Adjusted Langevin Algorithm (MALA) for each set of coordinates [63]. The

Ps(., .) is therefore defined implicitely by the proposal density and the ac-

cept/reject step. Given
(

q
(i)
s−1, z

(i)
s−1

)

, the proposals consist of:

21



• Updating q
(i)
s−1 → q(i)

s :

q(i)
s − q

(i)
s−1 = ∆tq

2
∇q log πγs(q

(i)
s−1, z

(i)
s−1) +

√

∆tqrq

= −β∆tq
2
∇qV (q

(i)
s−1, z

(i)
s−1) +

√

∆tqrq.

(32)

• Updating z
(i)
s−1 → z(i)

s :

z(i)
s − z

(i)
s−1 = ∆tz

2
∇z log πγs(q

(i)
s , z

(i)
s−1) +

√
∆tzrz

= −β∆tz
2

(

∇zV (q
(i)
s−1, z

(i)
s−1)−∇zÂ(z

(i)
s−1;θγs)

)

+
√

∆tqrq.

(33)

where rq and rz are i.i.d standard Gaussian vectors. A Metropolis-Hastings

accept/reject step with respect to the target invariant density πγs(·) was per-

formed after each update which ensures πγs-invariance. Two different time

steps were used ∆tq and ∆tz for the q and z coordinates respectively. Their

values were adjusted after each iteration s so as to retain an average accep-

tance ratio (over all replicas N) between 50% and 80% [64], simply by in-

creasing/decreasing the current time step using a multiplication factor 6 . The

variable time step ensured better mixing at the Rejuvenation step and con-

tributed to the adaptivity of the algorithm. The theoretical requirements are

satisfied whether one or more MALA time steps are performed in Equations

(32) and (33). Naturally other molecular dynamics samplers can be employed

which could potentially exhibit better mixing or fit more closely to the physics

of the problem at hand [8].

It is also noted that the approximation of the free energy Â(z;θ), biases the

potential of p(q, z | θ) (Equation (3)) and allows the system to overcome free

6 The multiplication factors we used in the numerical examples where 1.2 for in-

crease and 0.7 for decrease.
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energy barriers [53]. Finally we note that the estimates of the ratio of nor-

malization constants Zs/Zs−1 between two successive unnormalized densities

πγs−1 and πγscan be obtained by averaging the unnormalized updated weights

in Equation (31) as a direct consequence of the importance sampling identity:

Zs

Zs−1
=

∫
πγs (q,z) dqdz

∫
πγs−1 (q,z) dqdz

=
∫ πγs (q,z)

πγs−1 (q,z)

πγs−1 (q,z)

Zs−1
dqdz

≈ ∑N
i=1 W

(i)
s−1

πγs (q
(i)
s−1,z

(i)
s−1)

πγs−1 (q
(i)
s−1,z

(i)
s−1)

.

(34)

These estimators can be telescopically multiplied ([20,36]) in order to com-

pute the ratio of normalization constants between any pair of distributions as

required in Equation (23).

Given the preceding discussion in sections 2.2, 2.3 and 2.4, we summarize

below the basic steps in the proposed free energy computation scheme: In the

inner loop and for fixed k, gradient descent (Section 2.2) is performed which

makes use of the adaptive SMC scheme (Section 2.4) in order to compute

the expectations in the gradient. In the outer loop, the cardinality of the

expansion k is increased by adding one kernel (i.e. k ← k + 1) based on

Equation (26). This is terminated when the KL gain (Equation (23)) does not

exceed a prescribed tolerance. Algorithm 2 summarizes formally the procedure.

Remark: As mentioned in section 2.2 a sufficient condition for the conver-

gence of the proposed stochastic approximation scheme is the unbiasedness of

the gradient estimators. It is noted that theoretical and numerical results sug-

gest that this condition is more stringent than necessary and can be relaxed

[50,58,78,1,10]. While the unbiasedness of SMC particulate approximations is
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Algorithm 2 Calculation of the free energy at a given temperature.

Require: k = 0, θ0 ≡ 0 and a particulate approximation of p(q, z | θ0)

(Equation (3)) at the desired temperature β (see Remark below).

while true do

Calculate ∆k based on Equation (23).

if ∆k ≤ tol then

Break the loop.

else

Add the optimal (k + 1)th kernel based on Equation (26) and set k ←

k + 1.

repeat

Estimate gradient at θk
m and calculate update θk

m+1 based on Equa-

tion (18).

Use adaptive SMC (section 2.4) to construct particulate approxima-

tion of p(q, z | θk
m+1) from p(q, z | θk

m).

until Convergence criteria are met.

end if

end while

ensured by the importance sampling step, it relies on an unbiased estimator of

the initial distribution p(q, z | θ0). In order to achieve this we considered two

schemes, one approximate (but nearly exact) and one exact. The first involved

running a long MCMC at a very high temperature which ensured good mixing

(the distribution of the reaction coordinates was effectively uniform). We sub-

sampled the chain in order to make sure that the samples drawn were close to

independent and assigned equal weights. Subsequently the SMC scheme was

employed to adaptively reduce the temperature. In physical problems where

the calculation of the temperature-dependent free energy surface was of inter-
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est (see section 3.2), this did not impose any additional burden. Furthermore,

and as long as, the first temperature was high enough the error introduced in

terms of bias was negligible as the MCMC chain for all practical purposes had

attained equilibrium. The second menthod which is exact, relied on running

MCMC for a few steps (at the target temperature) and estimating the mean

and covariance of the atomistic coordinates q (and reaction coordinates z is

the alchemical case). We subsequntly performed importance sampling using

as an importance sampling density multivariate Gaussians with the aforemen-

tioned moments and calculated weights based on their ratio with the density

p(q, z|θ0). This ensured an unbiased estimator for p(q, z|θ0) albeit a very poor

one (with large variance) as the importance sampling distribution was in gen-

eral a poor approximation of p(q, z|θ0). Despite the different initializations

both methods converged in the sample problems examined which is a testa-

ment to the power of the stochastic approximation. We also performed runs

where particles were generated by running MCMC with p(q, z|θ0) as the tar-

get. Despite the bias in the estimator (resulting from lack of equilibrium) the

method was still able to converge which coincides with the results mentioned

above.

3 Extensions

The current section is devoted to extensions of the proposed algorithmic envi-

ronment. In particular we discuss the reaction coordinate case that generalizes

the applicability of the proposed method (Section 3.1). Section 3.2 is devoted

to the calculation of the free energy landscape as a function of the temperature

where it is shown that the sequential nature of the proposed methodology can
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lead to significant computational advantages.

3.1 The reaction coordinate case

The proposed method was described for the alchemical case. However, it is

straightforwardly generalized to cover also the general reaction coordinate

case. Let ξ :M→D be a function of the system coordinates q. This function

is called a reaction coordinate [45]. It is evident that q can be viewed in a

probabilistic framework as a random variable and as a result:

z = ξ(q), (35)

is also a random variable. The probability distribution of z can be found by

integrating out q:

p(z | β) =
∫

p(q)δ(ξ(q)− z)dq ∝
∫

exp (−βV (q)) δ(ξ(q)− z)dq. (36)

The free energy A(z) with respect to the reaction coordinate ξ(q) is defined

to be the effective potential of z = ξ(q), i.e.:

p(z) ∝ exp (−βA(z)) . (37)

Combining these two equations we see that:

A(z) = −β−1 log
∫

exp (−βV (q)) δ(ξ(q)− z)dq. (38)

If Â(z;θ) is an estimate of A(z), we define a new probability distribution over

q as:

p(q|θ) ∝ 1D(ξ(q)) exp
(

−β(V (q)− Â(ξ(q);θ))
)

. (39)

It is straightforward to see that under this new distribution for q, the pdf of
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z becomes:

p(z|θ) =
∫

p(q|θ)δ(ξ(q)− z)dq ∝ 1D(z) exp
{

−β(A(z)− Â(z;θ))
}

. (40)

This coincides with the expression in Equation (5) and therefore the ensuing

derivations hold identically. From a practical point of view, sampling need

only be performed in the q space and therefore the adaptive SMC schemes are

employed to obtain particulate approximations of the density in Equation (39).

The only difference appears in the MCMC-based Rejuvenation step where the

MALA sampler is employed only with regards to q. In particular the update

of Equation (32) now becomes:

q(i)
s − q

(i)
s−1 = ∆tq

2
∇qπγs(q

(i)
s−1) +

√

∆tqrq

= −β∆tq
2

(

∇qV (q
(i)
s−1)− ∂Â

∂z
∇qξ(q)

)

+
√

∆tqrq .

(41)

It is noted that, in contrast to some ABF methods which require second-order

derivatives of ξ [29], the proposed technique only needs first-order derivatives.

Finally, we point out that the ability of the proposed approach to provide

efficiently estimates of parametrized free energy surfaces (as in section 3.2

with respect to the temperature β), can also be exploited in the reaction

coordinate case by defining a joint density:

p(q, z | θ) ∝ exp
{

−β
(

V (q) +
µ

2
‖ z− ξ(q) ‖2 −Âµ(z;θ)

)}

, (42)

where as in [51] an artificial spring with stiffness µ has been added. Clearly for

µ → ∞ one recovers the aforementioned description, but for all other values

of µ the formulation reduces to that of Equation (3) where in place of V (q, z)

we now have V (q) + µ
2
‖ z − ξ(q) ‖2. One can therefore obtain free energy

surfaces for various µ values. For smaller µ the free energy would be flatter
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and in the extreme case of µ = 0 it would be constant. As µ increases, the

complexities of the free energy surface would become pronounced. Hence by

exploiting the idea of section 3.2, a sequence of problems parametrized by µ

rather than β, can be constructed to gradually move to larger µ values by

using the free energy of the previous µ as an initial guess for the new one.

The adaptive SMC scheme would ensure a smooth enough transition while

retaining a good level of accuracy for the approximations obtained.

3.2 Obtaining the free energy landscape for various temperatures.

The methodology described in the previous sections is suitable for calculating

the free energy as a function of z at a given temperature. However, one is often

interested in the temperature dependence of the free energy landscape. In order

to achieve this goal we make use of the following two facts. Firstly, the free

energy landscape at higher temperatures is flatter and secondly that nearby

temperatures have similar free energy landscapes. Based on these, we propose a

natural extension to the sequential sampling framework of subsection 2.4 that

can efficiently produce estimates of the free energy at various temperatures.

The idea is to start from a higher temperature, compute the free energy as

described before, then gradually move towards lower temperatures using the

free energy of the previous temperature as an initial guess for the new one.

In particular given the free energy estimate Âβ1(z;θ(β1)) and the particulate

approximation of the joint density pβ1(q, z|θ(β1)) at a temperature 1/β1, we

propose employing the aforementioned adaptive SMC in order to obtain a

particulate approximation of the following joint density at β2 > β1 (i.e. for
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lower temperature)

pβ2(q, z | θ(β1)) ∝ exp
{

−β2

(

V (q, z)− Âβ1(z;θ(β1))
)}

. (43)

The iterations enumerated in Algorithm 2 can then be carried out in the

same fashion by updating the existing θ as well as adding new kernels if the

convergence criteria are not satisfied.

The critical step involves building a sequence of distributions from pβ1(q, z|θ(β1))

to pβ2(q, z | θ(β1)) in Equation (43). For this purpose and similarly to a sim-

ulated annealing schedule we employ

πγ(q, z) ∝ exp
{

−((1− γ)β1 + γβ2)
(

V (q, z)− Âβ1(z;θ(β1))
)}

. (44)

The steps in Algorithm 1 should be adjusted to the aforementioned sequence

of bridging distributions with the most striking difference in the Reweighing

step where the updated weights in Equation (31) should now be given by

w(i)
s (γs) = w

(i)
s−1

πγs (q
(i)
s−1,z

(i)
s−1)

πγs−1 (q
(i)
s−1,z

(i)
s−1)

= w
(i)
s−1 exp

{

−(γs − γs−1)(β2 − β1)
(

V (q
(i)
s−1, z

(i)
s−1)− Âβ1(z;θ(β1))

)}

.

(45)

We demonstrate the efficacy of such an approach in the last example of section

4. It is finally noted that at the beginning of iterations at each new tempera-

ture, kernels with very small weights θj were removed if |θj |

maxi|θi|
≤ 0.01.

4 Numerical Examples

In the ensuing numerical examples the following parameter values were used:

(1) SMC: ESSmin = N/2, ζ = 0.95.
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(2) Time-step adaptation: We used the multiplication factors ai = 1.2 to

increase, and ad = 0.7 to decrease the time-step so that the acceptance

ratio remained between 50% and 80%.

(3) Stochastic gradient descent: m0 = 0.

The rest of the parameter values are discussed in each particular problem.

The algorithm we used for the solution of the kernel addition optimization

problem defined in Equation (26) was the simplex method for multidimen-

sional minimization [60]. The centers zj of the kernels were restricted within

the domain D, while the bandwidths τj,ℓ were allowed to have values within

0.01 diam(D) and 0.5 diam(D) 7 .

4.1 Two-Dimensional Toy Example

Consider a two-dimensional system [75,42] with a single parameter z, inter-

acting with potential energy:

V (q; z) = cos(2πz)(1 + d1q) + d2q
2.

Assume that q given z and β is distributed according to:

p(q|z, β) ∝ exp (−βV (q; z)) ,

where β is also a fixed parameter that plays the role of an inverse temperature.

We wish to calculate an approximation Â(z) of the free energy A(z) on an

interval D = [−0.5, 0.5]. The true free energy can be found analytically to be

A(z) = cos(2πz)− d21 cos(2πz)
2

4d2
+ c,

7 diam(D) = sup{|z1 − z2| : z1, z2 ∈ D} denotes the diameter of the set D.
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where c is a constant that depends upon the specific choice of the fixed pa-

rameters. In what follows, we choose c so that A(−0.5) = 0.

To demonstrate our method in this simple example we used d1 = 2, d2 = 30.

The potential energy V (q; z) for this choice of the parameters is depicted in

Figure 1(a). We fix the inverse temperature to β = 10. As shown in Figure

1(b), the distribution is bimodal with a big region of practically zero prob-

ability separating the two modes. Hence, metastability along the parameter

z is apparent. The performance of the proposed method with respect to the

number of replicas used in the adaptive SMC scheme is depicted in Figures 2

and 3 which show the evolution of the estimated free energy landscape with

N = 100 and N = 10, 000 replicas respectively. In both cases the method is

capable of capturing correctly the characteristics of the reference solution and

as expected the variance of the computated solution is less when the number

of replicas is larger. In both cases the Robbins-Monro learning series is picked

to be ηm = ηm−a with a = 0.6 and the learning rate η = 0.1.

Figure 4(a) shows the first three kernels selected by the greedy scheme de-

scribed in section 2.3. Figure 4(b) depicts the log-values of the kernel weights

{θj}kj=1 which clearly demonstrate the ability of the proposed approach to pro-

vide sparse approximations. The first kernel selected has the greatest weight

and hence it contains the majority of the information about the free energy

curve. The rest of the kernels are progressive corrections of the estimate given

by the first kernel. This conclusion is also supported by the result of Figure 5

which shows the evolution of the reduction in the KL divergence with respect

to the total number of iterations as quantified by adding the ∆k+1 in Equa-

tion (23). Clearly the first kernel offers the greatest KL gain (∆1) and further

kernel additions offer (almost always) progressively smaller reductions in the
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(a) The potential energy V (q1, q2) for

d1 = 2, d2 = 30

(b) The probability distribution

p(q1, q2|β) for d1 = 2, d2 = 30, β = 10

Fig. 1. Potential energy and pdf for the toy example of section 4.1

KL divergence.

4.2 WCA Dimer

We consider n = 16 atoms in a two-dimensional fully periodic box of side l

which interact with a purely repulsive WCA pair potential [42]:

VWCA(r) =







4ǫ
[(

σ
r

)12 −
(
σ
r

)6
]

+ ǫ , if r ≥ r0

0 , otherwise

,

where r0 = 21/6σ. The parameters σ and ǫ give the length and energy scales

respectively. Two of these atoms (say atoms 1 and 2) are assumed to form a

dimer and their interaction is described instead with a double-well potential:

VS(r) = h

[

1− (r − r0 − w)2

w2

]

,

where h,w are fixed parameters and r the distance between them. This po-

tential has two equilibrium points r0 and r0 + 2w. The barrier separating the

two equilibria is h.

32



-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

K=1

reference

z

A
(z
)

(a) k=1

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

K=1

K=2

reference

z

A
(z
)

(b) k=2

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

K=1

K=2

K=3

reference

z

A
(z
)

(c) k=3

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

K=1

K=2

K=3

K=8

reference

z

A
(z
)

(d) k=8

Fig. 2. Free energy profiles for various kernel numbers k when usingN = 100 replicas

in the adaptive SMC scheme

Let q = (q1, q2, . . . , qN ) with qi ∈ R
2 denoting the position of atom i. The

potential energy of the system is

V (q) = VS(|q1 − q2|) +
2∑

i=1

N∑

j=3

VWCA(|qi − qj|) +
∑

2<i<j

VWCA(|qi − qj|).

We consider an NVT ensemble (the volume V is determined by the side of the

box l). The probability distribution of the atomic positions q is:

p(q|β) ∝ exp (−βV (q)) ,

where β = 1
kBT

, kB is the Boltzmann constant and T the temperature of the

system. Under these assumptions atoms 1 and 2 will form a dimer with two

equilibrium lengths. An effective potential of the dimer length in the presence

33



-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

K=1

reference

z

A
(z
)

(a) k=1

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

K=1

K=2

reference

z

A
(z
)

(b) k=2

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

K=1

K=2

K=3

reference

z

A
(z
)

(c) k=3

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

K=1

K=2

K=3

K=8

reference

z

A
(z
)

(d) k=8

Fig. 3. Evolution of free energy estimates at various kernel numbers k when using

N = 10, 000 replicas in the adaptive SMC scheme

of the other atoms is given by the free energy A(r) with respect to the reaction

coordinate:

z = ξ(q) =‖ q1 − q2 ‖2,

where || · ||2 is the Euclidean norm of R2.

We calculate A(z) using our scheme for two different box sizes (densities): l = 5

(high density) and l = 12 (low density). The parameters are set to n = 16

atoms, β = 1, ǫ = 1, σ = 1, h = 1, w = 0.5. We employed N = 500 replicas and

the Robbins-Monroe learning series is again ηm = ηm−a with a = 0.501 and

η = 0.1. The resulting free energy curves at various stages of the estimation

process with increasing number of kernels are shown in Figure 6. Figure 7
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(reference) depicts the KL-distance between the initial distribution (θ = 0) and the

target uniform distribution which can be calculated analytically for this example.
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Fig. 6. The free energy of the dimer at two different densities and for various numbers

of kernels k, compared with VS(r). Notice that at low density (a) the right well

becomes the most probable. This situation is reversed at high density (b).

compares the empirical cumulative distribution function of the replicas with

that of the target uniform. Their proximity indicates convergence as it can

also be established by a Kolmogorov-Smirnov test.

From a physical point of view, we notice that at low density i.e. when the box

size is l = 12 (Figure 6(a)), the equilibria move to the right with the well

closest to r0 + 2w becomes the most probable. Furthermore the free energy

barrier is slightly decreased as compared to the high density case when l = 5

(Figure 6(b)). Under these conditions the equilibria move to the left and the

well closest to r0 becomes the most probable.
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Fig. 7. Comparison of the empirical cumulative distribution function of the reaction

coordinates of the replicas with that of the target uniform for l = 5. We also

performed a Kolmogorov-Smirnov test [54] as implemented in Matlab [55]. The

default confidence level was h = 0.05. The hypothesis was accepted and the test

reported an asymptotic p value of 0.3515. The value of the test statistic was 0.0631.

4.3 38-Atom Lennard-Jones Cluster (LJ38)

We consider a 38-atom cluster in 3-dimensional space with pairwise interac-

tions given by the Lennard-Jones potential:

VLJ(r) =

[(
σ

r

)12

−
(
σ

r

)6
]

, (46)

with ǫ and σ playing the role of energy and length scale respectively. Let the

Cartesian coordinates of the system be:

q = (q1, . . . ,q38) ,qi ∈ R
3. (47)

Then the potential energy of the system is:

V (q) =
∑

i<j

VLJ (|qi − qj|) .

Finally we assume that the replicas follow an NVT distribution of the form:

p(q|β) ∝ exp {−βV (q)} ,
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(a) Q4 ≈ 0.01. (b) Q4 ≈ 0.19 (truncated octahedron).

Fig. 8. Indicative metastable states corresponding to the two wells of the free energy

landscape with respect to order parameter Q4 (Equation (48)).

where β = 1/kBT . At zero temperature the system is known to have a global

minimum yielding an FCC truncated octahedron (Figure 8(b)). The second

and third lower energies give incomplete Mackey icosahedra. Furthermore

there is a big number of liquid-like local minima ([25,7]).

Consider the family of order parameters initially introduced in [69]:

Ql =




4π

2l + 1

l∑

m=−l

|Q̄lm|2




2

, (48)

with:

Q̄lm =
1

Nb

∑

rij<r0

Ylm(θij, φij),

where the sum is over all the Nb pairs of atoms with rij = |qi − qj| < r0,

Ylm(θ, φ) is a spherical harmonic, while θij and φij are the polar and azimuthal

angles of a bond vector with respect to an arbitrary coordinate system. In [7]

it is shown that for l = 5, Q4 can distinguish the FCC structure but not

the icosahedral and liquid-like minima (Figure 8(a)). However, if one also
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considers the potential energy as a reaction coordinate, the two structures are

well-separated. Hence, we define the two dimensional reaction coordinate:

ξ(q) = (Q4(q), V (q)) .

and compute the free energy:

A(Q4, E) = β−1
∫

exp {−βV (q)} δ(Q4 −Q4(q))δ(E − V (q))dq,

over the domain:

D = [0, 0.2]× [−175ǫ,−145ǫ],

for a temperature range kBT = 0.21 to kBT = 0.091 using the temper-

ing scheme described in Section 3.2. We employ N = 100 replicas and 10

MCMC/Rejuvenation steps per replica. At each β = kBT , the Robbins-Monro

learning series was adjusted to ηm = ηm−a with a = 0.501 and a learning rate

η = 0.1/β. The adaptive SMC scheme automatically determined 260 inter-

mediate steps/distributions in order to cover the whole range of the afore-

mentioned temperatures. The time step ∆tq employed in the MALA sampler

was adaptively adjusted as discussed previously and took values between 10−4

(low temperatures) and 7× 10−4 (high temperatures). The very first step, at

T = 0.21 (β = 4.76) required 12, 000 optimization iterations to converge with

a cost of approximately 7.2× 105 time steps per replica. It is emphasized that

due to the parallelizable nature of the SMC scheme employed, each replica

can be simulated on a different CPU. Centralized control is only required for

the evaluation of the ESS (Reweighting step) and during the Resampling step

which are computationally less expensive than the Rejuvenation step.

The sequence of intermediate β’s determined automatically by the scheme

discussed in section 3.2 is depicted in Figure 9. The similarity of the free en-
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ergy surfaces at neighboring temperatures allowed us to converge with, on

average, 800 optimization iterations at each intermediate β. The overall simu-

lation cost amount to 2.4×104 time steps per replica. This was approximately

30 times less than the 7.0 × 105 time steps per replica which were needed

when calculating the free energy solely at the final β = 0.091 i.e. without

using the sequence of temperatures and corresponding free energies. The sig-

nificant reduction indicates the potential computational savings afforded by

the sequential approach advocated in this work.

The free energy surfaces computed are depicted in Figure 10 at four indicative

temperatures. The number of kernels selected by the algorithm varied between

90 and 120. As it has been reported in previous studies [7], we identified two

metastable states at Q4 ≈ 0.01 which corresponds to the truncated octahedron

and at Q4 ≈ 0.19 which corresponds to the icosahedron. The latter becomes

more pronounced at lower temperatures.

In order to assess the quality of the results in two dimensions we also calcu-

lated the free energy profile using only Q4 as the reaction coordinate (Fig-

ure 11) and compared it with the result obtained by performing a numeri-

cal integration of the two-dimensional free energy surface i.e. by computing

A(Q4) = −β−1 log
∫

e−βA(Q4,E)dE. The two free-energy curves are depicted in

Figure 11 where good agreement is observed at two different temperatures.

5 Conclusions

In summary, the proposed method provides a unifying framework for estimat-

ing the free energy function simultaneously with biasing the dynamics. The
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Fig. 9. Sequence of intermediate β’s identified by the scheme discussed in section

3.2 for the LJ38 cluster. The free energy landscape was calculated at each of these

temperatures by efficiently updating the free energy surface at the previous step.

minimization of the Kullback-Leibler divergence in the extended space pro-

vides rigorous convergence bounds and diagnostics. It requires minimal ad-

justment of parameter values a priori (basically only the learning rate λ and

convergence tolerances) as it is adaptive and automatically promotes sparse

representations of the free energy surface. The proposed approach shares a

common theme with other adaptive methods in free-energy estimation and

Monte Carlo methods in general, in that the target distribution (in our case

p(q, z | θ)) is modified from iteration to iteration based on its past samples

[48]. The approximation of the free energy Â(z;θ), biases the potential of

p(q, z | θ) (Equation (3)) and allows the system to overcome free energy bar-

riers [53]. As in [24], no binning is needed and the bias potential is nonlocal,

providing information about the free energy landscape not only at the states

visited but in their neighborhood as well. It offers several possibilities for fur-

ther improvements by considering different optimization schemes (e.g. noisy
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Fig. 10. Free energy contours A(Q4, E) with respect to the two reaction coordinates

Q4 (x-axis) and E (y-axis) at various temperatures for LJ38.

conjugate gradients) and employing different basis functions (e.g. wavelets).

Its sequential nature allows the efficient computation of a family of free en-

ergy surfaces at different temperatures. We believe that these features make

the proposed approach suitable to calculate the free energy of systems more

physically challenging than the ones discussed in this paper.
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Appendix A

This appendix contains a proof of the second sufficient condition C2 for the

almost sure convergence of the proposed stochastic approximation scheme as

discussed in Section 2.2.

For a fixed number of kernels to k, let θ̃k ∈ Θ be the unique global minimum

of I(θk), let 0 < ǫ < 1 and define the subset of Θ:

Θǫ =
{

θk ∈ Θ : ǫ <‖ θk − θ̃k ‖< 1/ǫ
}

.

Our goal is to prove that:

inf
θk∈Θǫ

(

θk − θ̃k
)T

J(θk) = inf
ǫ<‖θk−θ̃k‖<1/ǫ

(

θk − θ̃k
)T

J(θk) > 0. (49)

To this end, observe that:

Z(θ̃k) =
∫

D×M e−β(V (q;z)−Â(z;θ̃k)) dqdz

= Z(θk)Ep(z|θk)

[

eβ(Â(z;θ̃k)−Â(z;θk))
]

(50)

and as a result of Jensen’s inequality:

log Z(θ̃k)
Z(θk)

= logEp(z|θk)

[

eβ(Â(z;θ̃k)−Â(z;θ))
]

≥ βEp(z|θk)

[

Â(z; θ̃k)− Â(z;θk)
]

(51)

Hence, the difference between the values of the objective function at the op-
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timum point θ̃k and an arbitrary θk ∈ Θǫ is non-negative and:

0 ≤ I(θk)− I(θ̃k) = − ∫D π(z) log p(z|θk) dz+
∫

D π(z) log p(z|θ̃k) dz

= βEπ(z)

[

Â(z; θ̃k)− Â(z;θk)
]

dz− log Z(θ̃k)
Z(θk)

≤ β
(

Eπ(z)

[

Â(z; θ̃k)− Â(z;θk)
]

− Ep(z|θk)

[

Â(z; θ̃k)− Â(z;θk)
])

= −∑k
j=1(θ̃

k
j − θkj )β

[

Ep(z|θk)[Kj(z)]− Eπ(z)[Kj(z)]
]

= (θk − θ̃k)TJ(θk)

(52)

where the last equality is a result of the definition of the gradient J(θ) of I(θ)

in Equation (15). Given that (θk − θ̃k)TJ(θk) ≥ I(θk) − I(θ̃k), it suffices to

prove that:

inf
θ∈Θǫ

(

I(θk)− I(θ̃k)
)

> 0. (53)

We do this by contradiction. Suppose that:

inf
θk∈Θǫ

(

I(θk)− I(θ̃k)
)

= 0 (54)

Then, there exists a sequence {θk
m} ⊂ Θǫ such that:

I(θk
m)→ I(θ̃k), as m→∞. (55)

Since the sequence {θk
m} is bounded, it has a convergent subsequence {θk

mn
},

i.e

θk
mn
→ θ∗, as n→∞,

for some θ∗ ∈ clos(Θǫ)
8 . From the continuity of I(θ) with respect to θ, we

must also have:

I(θk
mn

)→ I(θ∗)

8 clos(A) denotes the closure of the set A ⊂ R
k under the Eucledian metric.
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From the uniqueness of the limit in Equation (55), we get that:

I(θ̃k) = I(θ∗)

Since I(θ) has a unique global minimum:

θ̃k = θ∗ ∈ clos(Θǫ),

which contradicts Equation (54).
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Appendix B

This appendix contains an alternative interpretation of the proposed for-

mulation (section 2.1) through the prism of the well-known Expectation-

Maximization scheme (EM, [23]) and offers some potential Bayesian exten-

sions.

For that purpose we define the function I ′(θ) = −I(θ) = ∫

D π(z) log p(z | θ)dz

(Equation (12)). Maximizing I ′(θ) is equivalent to minimizing I(θ). We note

that for all z and any density Q(q), q ∈M:

log p(z | θ) = log
∫

M p(q, z | θ) dq

= log
∫

MQ(q)p(q,z|θ)
Q(q)

dz

≥ ∫M Q(q) log p(q,z|θ)
Q(q)

dz (Jensen′s inequality)

=
∫

M Q(q) log p(q, z | θ) dz − ∫ Q(q) logQ(q) dq

= F(Q,θ; z)

(56)

This lower bound F holds for all z ∈ D and depends on the auxiliary density

Q(q) and the model parameters θ. Furthermore it also provides a lower bound

on I ′(θ):

I ′(θ) ≥
∫

D
π(z) (F(Q,θ; z)) dz (57)

For any z ∈ D and fixed θ, the optimal density Q is:

Qopt(q | θ) = p(q | z,θ) (58)

in which case the inequalities in Equations (56) and (57) become equalities.
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More importantly though the introduction of the auxiliary density Q suggests

an iterative algorithm for finding the optimal parameter values for θ. Initial-

izing with an value θ0, at each subsequent iteration m we alternate between

the following two steps:

• Expectation step (E-step):

Qm(z) = argmax
Q
F(Q,θm; z) = Qopt(q | θm−1) = p(q | z,θm−1), ∀z ∈ D

(59)

• Maximization step (M-step):

θm = argmaxθ
∫

D π(z) (F(Qm,θ; z)) dz

= argmaxθ
∫

D (
∫

M p(q | z,θm−1) log p(q, z | θ) dq) π(z) dz

= argmaxθ H(θ,θm−1) = argmaxθ I
′(θ)

(60)

This essentially suggests a coordinate ascent that alternates between θ and

Q(q) which is guaranteed to converge to a local maximum [57,59]. We show in

the sequel that the first and second order derivatives of H(θ,θm−1) coincide

with those of I ′(θ). As a result they have a unique and identical maximum.

In particular, substituting from Equation (3), we obtain:

H(θ,θm−1) =
∫

D

(∫

M p(q | z,θm−1)(−β
(

V (q, z)− Â(z;θ)
)

− logZ(θ)
)

π(z)dz

=
∫

D

(

Ep(q|z,θm−1)

[

−β
(

V (q, z)− Â(z;θ)
)])

π(z)dz − logZ(θ)

(61)

Using Equation (14) and the expansion of Equation (7) for Â(z;θ), we obtain
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the gradient of ∇θH(θ,θm−1) with respect to θ:

∂H(θ,θm−1)
∂θj

=
∫

D β ∂Â(z;θ)
∂θj

π(z)dz − ∂ logZ(θ)
∂θj

= βEπ(z)

[

∂Â(z;θ)
∂θ

]

− β − ∂ logZ(θ)
∂θj

= β
(

Eπ(z) [Kj(z)]− Ep(z|θ) [Kj(z)]
)

(62)

Furthermore, the Hessian of the objective function H(θ,θm−1) is proportional

to the covariance between the kernels i.e.:

∂2H(θ,θm−1)
∂θj∂θl

= −∂ logZ(θ)
∂θj∂θl

= −β2Covp(z|θ)[Kj, Kl]

(63)

A Bayesian extension to the aforementioned formulation could be readily ob-

tained by the introduction of a prior density on θ, i.e. p(θ). In this case the

objective function I ′(θ) = −I(θ) (Equation (11)) can be interpreted as the

limiting log-likelihood in the case of infinite “observations” {zi}ni=1 (n → ∞)

from the uniform density π(z) on D, i.e.:

n∑

i=1

log p(zi | θ)→
∫

D
π(z) log p(z | θ) dz (64)

Hence the log-posterior (conditioned on the “observations“ zi) would be:

Î(θ) = log p(θ | {zi}n→∞
i=1 ) ∝

∫

D
π(z) log p(z | θ) dz

︸ ︷︷ ︸

log−likelihood

+ log p(θ)
︸ ︷︷ ︸

log−prior

= I ′(θ) + log p(θ)

(65)

A maximization of the log-posterior Î(θ) amounts to a MAP (Maximum A

Posteriori) point estimate of θ. The gradient and Hessian of Î(θ) would then be
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penalized/regularized versions of the respective gradient and Hessian of I ′(θ).

Appropriate prior modeling could provide interesting extensions in the context

of sparse representations ([27,73]). Prior modeling could also be extended ed

to the remaining parameters of the expansion e.g. kernel bandwidths.
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[13] G. Ciccotti, T. Lelièvre, and E. Vanden-Eijnden. Sampling Boltzmann-Gibbs

distributions restricted on a manifold with diffusions: Application to free energy

calculations. Rapport de recherche du CERMICS, 309, 2006.

[14] T. M. Cover and J. A. Thomas. Elements of Information Theory. John wiley

and Sons, 2nd edition, 1991.

[15] D. Crisan and A. Doucet. Convergence of sequential Monte Carlo

methods. Technical report, Technical Report CUED/FINFENG/TR381, Signal

Processing Group, Department of Engineering, University of Cambridge, 2000.

[16] E. Darve and A. Pohorille. Calculating free energies using average force. The

Journal of Chemical Physics, 115(20):9169, 2001.
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[45] T. Lelièvre, M. Rousset, and G. Stoltz. Free Energy Computations: A

Mathematical Perspective. Imperical College Press, 2010.

[46] F. Liang. Generalized Wang-Landau algorithm for Monte Carlo Computation.

J. Amer. Statist. Assoc., 100:1311–1327, 2005.

[47] F. Liang, C. Liu, and R. J. Carroll. Stochastic Approximation in Monte Carlo

Computation . J. Amer. Statist. Assoc., 102:305–320, 2007.

54



[48] F. Liang, C. Liu, and R.J. Carroll. Advanced Markov chain Monte Carlo:

Learning from Past Samples. Wiley., 2010.

[49] J S Liu. Monte Carlo Strategies in Scientific Computing. Springer Series in

Statistics. Springer, 2001.

[50] L. Ljung. Analysis of recursive stochastic algorithms. IEEE Transactions on

Automatic Control, 22:551575, 1977.

[51] L. Maraglian and E. Vanden-Eijnden. A temperature accelerated method

for sampling free energy and determining reaction pathways in rare events

simulations. Chemical Physics Letters, 426(1-3):168–175, July 2006.

[52] L. Maragliano and E. Vanden-Eijnden. Single-sweep methods for free energy

calculations. The Journal of Chemical Physics, 128(18):184110, May 2008.

[53] S. Marsili, A. Barducci, R. Chelli, P. Procacci, and V. Schettino. Self-healing

umbrella sampling: a non-equilibrium approach for quantitative free energy

calculations. The Journal of Physical Chemistry B, 110(29):14011–14013, July

2006.

[54] F. J. Massey. The kolmogorov-smirnov test for goodness of fit. Journal of the

American Statistical Association, 46:68–78, 1951.

[55] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick,

Massachusetts, 2010.

[56] H. Meirovitch. Recent developments in methodologies for calculating the

entropy and free energy of biological systems by computer simulation. Current

Opinion in Structural Biology, 17(2):181–186, 2007.

[57] X. L. Meng and D. B. Rubin. Maximum likelihood estimation via the ECM

algorithm: A general framework. Biometrika, 80(2):267–278, 1993.

55



[58] M. Métivier and P. Priouret. Applications of a Kushner and Clark lemma to

a general classes of stochastic algorithms. IEEE Transactions on Information

Theory, 30:140151, 1984.

[59] R. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental,

sparse, and other variants. In Learning in Graphical Models, pages 355–368.

Kluwer Academic Publishers, 1998.

[60] J. A. Nelder and R. Mead. A simplex method for function minimization.

Computer Journal, 7:308–313, 1965.

[61] J. M. Rickman and R. LeSar. Free-energy calculations in materials research.

Annual Review of Materials Research, 32:195–217, 2002.

[62] H. Robbins and S. Monro. A stochastic approximation method. The Annals of

Mathematical Statistics, 22(3):400–407, 1951.

[63] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, 2nd

edition, 2004.

[64] G. O. Roberts and J. S. Rosenthal. Optimal scaling for various Metropolis-

Hastings algorithms. Statistical Science, 16(4):351–367, 2001.

[65] N. Schraudolph and T. Graepel. Towards stochastic conjugate gradient

methods. In Proceedings of the 9th International Conference on Neural

Information Processing, Singapore, 2002.

[66] M.R. Shirts and J.D. Chodera. Statistically optimal analysis of samples from

multiple equilibrium states. J. Chem. Phys., 129:124105, 2008.

[67] Marc Souaille and Benoit Roux. Extension to the weighted histogram analysis

method: combining umbrella sampling with free energy calculations. Computer

Physics Communications, 135(1):40 – 57, 2001.

56



[68] J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation,

Simulation, and Control. John Wiley and Sons, 2003.

[69] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti. Bond-orientational order in

liquids and glasses. Physical Review B, 28(2):784–805, 1983.

[70] G. Stoltz. Path sampling with stochastic dynamics: Some new algorithms.

Journal of Computational Physics, 225:491–508, 2007.

[71] R. Swendsen, M. Fasnacht, and J. Rosenberg. The adaptive integration

method for calculating general free energy functions. Computer Physics

Communications, 169(1-3):274–276, 2005.

[72] M. E. Tipping. The Relevance Vector Machine. In Advances in Neural

Information Processing Systems 12, pages 652–658. MIT Press, 2000.

[73] M. T. Tipping. Sparse Bayesian learning and the relevance vector machine.

Journal of Machine Learning Research, 1:211–244, 2001.

[74] A. B. Tsybacov. Introduction to Nonparametric Estimation. Springer., 2009.

[75] A. F. Voter. A method for accelerating the molecular dynamics simulation of

infrequent events. The Journal of Chemical Physics, 106(11):4665–4677, 1997.

[76] F. Wang and D. P. Landau. Determining the density of states for classical

statistical models: A random walk algorithm to produce a flat histogram.

Physical Review E, 64(5):56101, 2001.

[77] F. M. Ytreberg, R. H. Swendsen, and D. M. Zuckerman. Comparison of free

energy methods for molecular systems. The Journal of Chemical Physics,

125(18):184114, 2006.

[78] A.L.. Yuille. The convergence of contrastive divergences. In Advances in Neural

Information Processing Systems 17. NIPS., December 2004.

57



[79] S. C. Zhu, Y. Wu, and D. Mumford. Minimax entropy principle and its

application to texture modeling. Neural Computation, 9(8):1627–1660, 1997.

[80] S. C. Zhu, Y. Wu, and D. Mumford. Filters, random fields and

maximum entropy (FRAME): Towards a unified theory for texture modeling.

International Journal of Computer Vision, 27(2):107–126, 1998.

58


